Quick Start Guide ----------------- 1. Install Microsoft Visual Studio 2008, any edition. 2. Install Microsoft Visual Studio 2010, any edition, or Windows SDK 7.1 and any version of Microsoft Visual Studio newer than 2010. 2a. Optionally install Python 3.6 or later. If not installed, get_externals.bat (build.bat -e) will download and use Python via NuGet. 3. Run "build.bat -e" to build Python in 32-bit Release configuration. 4. (Optional, but recommended) Run the test suite with "rt.bat -q". Building Python using MSVC 9.0 via MSBuild ------------------------------------------ This directory is used to build Python for Win32 and x64 platforms, e.g. Windows 2000 and later. In order to use the project files in this directory, you must have installed the MSVC 9.0 compilers, the v90 PlatformToolset project files for MSBuild, and MSBuild version 4.0 or later. The easiest way to make sure you have all of these components is to install Visual Studio 2008 and Visual Studio 2010. Another configuration proven to work is Visual Studio 2008, Windows SDK 7.1, and Visual Studio 2013. If you only have Visual Studio 2008 available, use the project files in ../PC/VS9.0 which are fully supported and specifically for VS 2008. If you do not have Visual Studio 2008 available, you can use these project files to build using a different version of MSVC. For example, use PCbuild\build.bat "/p:PlatformToolset=v100" to build using MSVC10 (Visual Studio 2010). ***WARNING*** Building Python 2.7 for Windows using any toolchain that doesn't link against MSVCRT90.dll is *unsupported* as the resulting python.exe will not be able to use precompiled extension modules that do link against MSVCRT90.dll. For other Windows platforms and compilers, see ../PC/readme.txt. To build modules that depend on external libraries, you need to download (and, for some of them, build) those first. It's thus recommended to build from the command line once as specified below under "Getting External Sources" as that does this automatically. Then, to continue development, you can open the solution "pcbuild.sln" in Visual Studio, select the desired combination of configuration and platform, then build with "Build Solution". You can also build from the command line using the "build.bat" script in this directory; see below for details. The solution is configured to build the projects in the correct order. To build an installer package, refer to the README in the Tools/msi folder. The solution currently supports two platforms. The Win32 platform is used to build standard x86-compatible 32-bit binaries, output into this directory. The x64 platform is used for building 64-bit AMD64 (aka x86_64 or EM64T) binaries, output into the amd64 sub-directory. The Itanium (IA-64) platform is no longer supported. Four configuration options are supported by the solution: Debug Used to build Python with extra debugging capabilities, equivalent to using ./configure --with-pydebug on UNIX. All binaries built using this configuration have "_d" added to their name: python27_d.dll, python_d.exe, parser_d.pyd, and so on. Both the build and rt (run test) batch files in this directory accept a -d option for debug builds. If you are building Python to help with development of CPython, you will most likely use this configuration. PGInstrument, PGUpdate Used to build Python in Release configuration using PGO, which requires Professional Edition of Visual Studio 2008. See the "Profile Guided Optimization" section below for more information. Build output from each of these configurations lands in its own sub-directory of this directory. The official Python releases may be built using these configurations. Release Used to build Python as it is meant to be used in production settings, though without PGO. Building Python using the build.bat script ---------------------------------------------- In this directory you can find build.bat, a script designed to make building Python on Windows simpler. This script will use the env.bat script to detect one of Visual Studio 2015, 2013, 2012, or 2010, any of which contains a usable version of MSBuild. By default, build.bat will build Python in Release configuration for the 32-bit Win32 platform. It accepts several arguments to change this behavior, try `build.bat -h` to learn more. Legacy support -------------- You can find build directories for older versions of Visual Studio and Visual C++ in the PC directory. The project files in PC/VS9.0/ are specific to Visual Studio 2008, and will be fully supported for the life of Python 2.7. The following legacy build directories are no longer maintained and may not work out of the box. PC/VC6/ Visual C++ 6.0 PC/VS7.1/ Visual Studio 2003 (7.1) PC/VS8.0/ Visual Studio 2005 (8.0) C Runtime --------- Visual Studio 2008 uses version 9 of the C runtime (MSVCRT9). The executables are linked to a CRT "side by side" assembly which must be present on the target machine. This is available under the VC/Redist folder of your visual studio distribution. On XP and later operating systems that support side-by-side assemblies it is not enough to have the msvcrt90.dll present, it has to be there as a whole assembly, that is, a folder with the .dll and a .manifest. Also, a check is made for the correct version. Therefore, one should distribute this assembly with the dlls, and keep it in the same directory. For compatibility with older systems, one should also set the PATH to this directory so that the dll can be found. For more info, see the Readme in the VC/Redist folder. Sub-Projects ------------ The CPython project is split up into several smaller sub-projects which are managed by the pcbuild.sln solution file. Each sub-project is represented by a .vcxproj and a .vcxproj.filters file starting with the name of the sub-project. These sub-projects fall into a few general categories: The following sub-projects represent the bare minimum required to build a functioning CPython interpreter. If nothing else builds but these, you'll have a very limited but usable python.exe: pythoncore .dll and .lib python .exe These sub-projects provide extra executables that are useful for running CPython in different ways: pythonw pythonw.exe, a variant of python.exe that doesn't open a Command Prompt window pylauncher py.exe, the Python Launcher for Windows, see http://docs.python.org/3/using/windows.html#launcher pywlauncher pyw.exe, a variant of py.exe that doesn't open a Command Prompt window The following sub-projects are for individual modules of the standard library which are implemented in C; each one builds a DLL (renamed to .pyd) of the same name as the project: _ctypes _ctypes_test _elementtree _hashlib _msi _multiprocessing _socket _testcapi pyexpat select unicodedata winsound There is also a w9xpopen project to build w9xpopen.exe, which is used for platform.popen() on platforms whose COMSPEC points to 'command.com'. The following Python-controlled sub-projects wrap external projects. Note that these external libraries are not necessary for a working interpreter, but they do implement several major features. See the "Getting External Sources" section below for additional information about getting the source for building these libraries. The sub-projects are: _bsddb Python wrapper for Berkeley DB version 4.7.25. Homepage: http://www.oracle.com/us/products/database/berkeley-db/ _bz2 Python wrapper for version 1.0.6 of the libbzip2 compression library Homepage: http://www.bzip.org/ _ssl Python wrapper for version 1.0.2s of the OpenSSL secure sockets library, which is built by ssl.vcxproj Homepage: http://www.openssl.org/ Building OpenSSL requires nasm.exe (the Netwide Assembler), version 2.10 or newer from http://www.nasm.us/ to be somewhere on your PATH. More recent versions of OpenSSL may need a later version of NASM. If OpenSSL's self tests don't pass, you should first try to update NASM and do a full rebuild of OpenSSL. If you use the PCbuild\get_externals.bat method for getting sources, it also downloads a version of NASM which the libeay/ssleay sub-projects use. The libeay/ssleay sub-projects expect your OpenSSL sources to have already been configured and be ready to build. If you get your sources from svn.python.org as suggested in the "Getting External Sources" section below, the OpenSSL source will already be ready to go. If you want to build a different version, you will need to run PCbuild\prepare_ssl.py path\to\openssl-source-dir That script will prepare your OpenSSL sources in the same way that those available on svn.python.org have been prepared. Note that Perl must be installed and available on your PATH to configure OpenSSL. ActivePerl is recommended and is available from http://www.activestate.com/activeperl/ The libeay and ssleay sub-projects will build the modules of OpenSSL required by _ssl and _hashlib and may need to be manually updated when upgrading to a newer version of OpenSSL or when adding new functionality to _ssl or _hashlib. They will not clean up their output with the normal Clean target; CleanAll should be used instead. _sqlite3 Wraps SQLite 3.28.0.0, which is itself built by sqlite3.vcxproj Homepage: http://www.sqlite.org/ _tkinter Wraps version 8.5.19 of the Tk windowing system. Homepage: http://www.tcl.tk/ Tkinter's dependencies are built by the tcl.vcxproj and tk.vcxproj projects. The tix.vcxproj project also builds the Tix extended widget set for use with Tkinter. Those three projects install their respective components in a directory alongside the source directories called "tcltk" on Win32 and "tcltk64" on x64. They also copy the Tcl and Tk DLLs into the current output directory, which should ensure that Tkinter is able to load Tcl/Tk without having to change your PATH. The tcl, tk, and tix sub-projects do not clean their builds with the normal Clean target; if you need to rebuild, you should use the CleanAll target or manually delete their builds. Getting External Sources ------------------------ The last category of sub-projects listed above wrap external projects Python doesn't control, and as such a little more work is required in order to download the relevant source files for each project before they can be built. However, a simple script is provided to make this as painless as possible, called "get_externals.bat" and located in this directory. This script extracts all the external sub-projects from https://github.com/python/cpython-source-deps and https://github.com/python/cpython-bin-deps via a Python script called "get_external.py", located in this directory. If Python 3.6 or later is not available via the "py.exe" launcher, the path or command to use for Python can be provided in the PYTHON_FOR_BUILD environment variable, or get_externals.bat will download the latest version of NuGet and use it to download the latest "pythonx86" package for use with get_external.py. Everything downloaded by these scripts is stored in ..\externals (relative to this directory). It is also possible to download sources from each project's homepage, though you may have to change folder names or pass the names to MSBuild as the values of certain properties in order for the build solution to find them. This is an advanced topic and not necessarily fully supported. The get_externals.bat script is called automatically by build.bat when you pass the '-e' option to it. Profile Guided Optimization --------------------------- The solution has two configurations for PGO. The PGInstrument configuration must be built first. The PGInstrument binaries are linked against a profiling library and contain extra debug information. The PGUpdate configuration takes the profiling data and generates optimized binaries. The build_pgo.bat script automates the creation of optimized binaries. It creates the PGI files, runs the unit test suite or PyBench with the PGI python, and finally creates the optimized files. See http://msdn.microsoft.com/en-us/library/e7k32f4k(VS.90).aspx for more on this topic. Static library -------------- The solution has no configuration for static libraries. However it is easy to build a static library instead of a DLL. You simply have to set the "Configuration Type" to "Static Library (.lib)" and alter the preprocessor macro "Py_ENABLE_SHARED" to "Py_NO_ENABLE_SHARED". You may also have to change the "Runtime Library" from "Multi-threaded DLL (/MD)" to "Multi-threaded (/MT)". Visual Studio properties ------------------------ The PCbuild solution makes use of Visual Studio property files (*.props) to simplify each project. The properties can be viewed in the Property Manager (View -> Other Windows -> Property Manager) but should be carefully modified by hand. The property files used are: * python (versions, directories and build names) * pyproject (base settings for all projects) * openssl (used by libeay and ssleay projects) * tcltk (used by _tkinter, tcl, tk and tix projects) The pyproject property file defines all of the build settings for each project, with some projects overriding certain specific values. The GUI doesn't always reflect the correct settings and may confuse the user with false information, especially for settings that automatically adapt for diffirent configurations.